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Summary

The statistical properties of a cubic smoothing spline

and its derivative are analyzed. It is shown that unless un-

natural boundary conditions hold, the integrated squared bias

is dominated by local effects near the boundary. Similar effects

are shown to occur in the regularized solution of a translation-

kernel integral equation. These results are derived by developing

a Fourier representation for a smoothing spline.
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1. Introduction and Summary

We consider statistical properties of smoothing splines and related

procedures. Given x = f(ti) + ci, 1 = 1,...,n where g is an unknown

smooth function and the ei are random errors, a cubic smoothing spline

g(t;X) is the function which minimizes

n f1 ii = x1-.g(t1)]
2 + A g't) dt . (1.1)

Smoothing splines were proposed by Whittaker (1923), Schoenberg (1964), and

Reinsch (1967). Some analysis of their statistical properties in the case

that g and f are periodic appears in Wahba (1975) and Rice and Rosenblatt

(1981). The method of cross validation for choosing the smoothing parameter

X from the data has been discussed in Craven and Wahba (1979).

Smoothing splines may be viewed in a larger context. Given xi =

(Af)(ti) + E where A is a linear operator, a "regularized" estimate of

f is the function g which minimizes

n

[xi-(Ag)(t i ) ] + X (g'(t))2 dt. (1.2)

Frequently Af is of the form

(Af)(t) / k(ts)f(s)ds . (1.3)

Many examples of this type may be found in Tikhonov and Arsenin (1977).

The method of regularization is used to control the instability that would

arise if one tried to invert A or A*A. The regularized solutions have a

formal resemblance to ridge-regression estimates; in both cases the variance

- 1.1 .. I "
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of the estimate is reduced at the cost of increasing bias. Although

there is a large literature on this topic, there has been relatively little

analysis of the statistical properties of the solutions.

In this paper we examine two cases of (1.3), numerical differentiation

(Af)(t) = f(u)du (1.4)

and deconvolution,

(Af)(t) = j w(t-s)f(s)ds o (1.5)

We next summarize and discuss our main results. Derivations and some

further results are contained in later sections. We first deal with a

cubic smoothing spline.

Consider observations

xk = f(k/n) + ck, k = 0,l,.,.,n

with f continuously differentiable, f E L2 and the k random variables£k

with

E c =0kO

E 2 2 >
kj kjo , >0.

We wish to determine a continuously differentiable function g g(t;X,n)

with g- E L2 that minimizes

* 'I..
* * Ir



r ii(x+ -(0-g1) 2 + E (xk-g(k/n)) 2

n~4 0~ k=1(1.6)

fl1 2
+ X (g'4*(t)) dt

Here X )X(n) > 0 and the object is to determine X(n) as a function of

n so that

fo1Efg(t)-f(t)] 2dt

tends to zero as n -'~at a rapid rate. The term

2 0 xn (g(0)+g(1))

appears in (1.6) because one wishes to allow for the possibility that

f(Q) 0 f(1) and in that case the Fourier series of f(t) will converge to

S(f(0)+f(1)) at t =0,10

Theorem 1. Let f E c . if X3 (n n X(n) -~ 0 as n -~then

Jof (t)Idt Ql;3n23 /2

Theorem 2. Let f (C4. Assume that X 3nWn 80.0 X (n)-'0 as n-~

Then if f 2 (0) or f 2 (1) # 0

f [E g(t)-f(t)] 2 dttY-{(f (2 )(0)) 2 + (f ( 2 )M) 2J x 5/4 2-3/2

white if f (2 )(0) f (~2)(1) -0 but f ( 3 ) (0) #0 or f (3)(1) 0 0 we have
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f (E g(t)-f(t)]2 dt 5 {(f (3)(0))2 + (f(3)(11)2}

A 7/4 3-2- 3/2•

A common reason for nonparametric data smoothing is to calculate an

extimate of the derivative of a function. Schemes for numerically differ-

entiating noisy data that are closely related to the derivative of a smooth-

ing spline have been proposed in Cullum (1971) and Anderssen and Bloomfield

(1974). The properties of the derivative of a smoothing spline follow

fairly directly from the properties of the smoothing spline itself.

Theorem 3. If f E C2 and if xn5  as n and

X O, then

f 2 3/4 7/2 1 - /2(g,(t))dt fiL_ X-3/. 2-7/ + o(n-lX
- 3/ 2)

n

Theorem 4. Assume that f E C 4, and that Xn 5 . Then if

f(2)(0) 0 0 or f(2) 0 0

O [E g'(t)-f'(t)]
2 dt 2 [(f (2)(0))2 + (f(2)(1))

2] • . 3/ 4 . 3 • 2- 3/ 2

If f(2)(0) = f(2) (1)- 0, but f(3)(0) or f (3)(1) # 0 then

(E g'(t)-f'(t)]2 dt g E(f( 3)(0)) 2 + (f 31(1121) 5 4 • 3 • 2

Comparing these results to Theorems 1 and 2 we see that the variance and

integrated squared bias of the derivative are a factor of X-1/2 larger than

the variance and integrate square bias of the function itself.
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Theorem 2 shows that the integrated squared bias is dominated by con-

tributions from the boundary unless g satisfies the condition g(k)(o) =

g (k() ( O,k = 2,3. Lemma 6 of section 3 gives a local approximation

to the bias in the case that these conditions are not met. Roughly, the

-1/2 -1/4
bias decays like exp (-2 X t) trigonometrically modulated. In the

interior of [0,1] the squared bias is proportional to X2

These results are not unexpected. The smoothing spline is a "natural"

spline and satisfies the two arbitrary end conditions f-(O) - f'(l) = 0.

In the context of pure interpolation the use of a natural spline is usually

not recommended since the error near the ends is of order h2 where h

is the mesh size whereas other methods can produce an error uniformly of

4 4order h , if f E C , de Boor (1978), Powell (1981). Similarly, it can

be shown that the boundary effect dominates the integrated squared error,

Rosenblatt (1976). In the nonstochastic framework methods of estimating

the boundary constraints have been proposed in these references and it

would appear plausible that a similar approach might work in the stochastic

case.

Natural splines in the nonstochastic setting and smoothing splines in

the stochastic setting are the optimal solutions of certain minimax problems,

Powell (1981) and Speckman (1981). It appears that flexibility is lost by

guarding against worst cases.

Smoothing splines have also been proposed in the case of spectral

density estimation (see Cogburn and Davis (1974) and Wahba (1980)). Boundary

effects similar to those studied here occur in the case of periodic smoothing

splines unless the function is smoothly periodic (see Rice and Rosenblatt (1980)).

4f
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The aliasing in the case of spectral analysis of discretely sampled data

implies that boundary behavior will not be smooth in this context.

In the deconvolution problem we consider observations

xk F(k/n) + ek9 k = 0,...,n

where F(k/n) = f2w(k/n-u)f(u)du, wihf 2 and the ck  uncorrelated

2random variables with mean 0 and variance . The regularized approxima-

tion to f is the function g that minimizes

n-i1I k (XkG(k/)) 2

(x 0+xn-G(0)-G(l))
2 + 1

4n nffi

(1.7)

+ X (g'(t)) 2 dt

Here G(k/n) = w(k/n-u)f(u)du. The kernel of the integral equation, w,

is the periodic extension of a function defined on [0,1], and it is

2assumed that w E L . We assume that the Fourier coefficients wk of w

are nonzero for all k.

The constants that occur in the asymptotic expressions for the compo-

nents of the integrated mean square error depend on the exact form of w,

but the rates of decrease depend only on the rate of decrease of the Fourier

coefficients wk of w. Paralleling Theorems I and 2 we have

Theorem 5. Let f E C2  and suppose that Wk2 k 2  >. If Xn2 3

X
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Theorem 6. Let f E C 4  and suppose that Iwk 12 k -2 1 6 >0 and Xn21+3 -O D

as n - .Then if f-(0) or f-(l) 0

f[E g(t)-f(t)] 2 dt A 5/(26+44)

if f'(0)= f-11) = 0 but f (3)(0) or f (3 )(1)# 0, then

f [ t)ft]2 t X7(84

if f k( 0) f fk( 1), k =2,3 then

[E g(t)-f(t)] dt-X

Analytic expressions for the approximate local bias are not available,

but the qualitative behavior is similar to that of a smoothing spline.

Note that if w is very smooth, B is large, and the integrated

mean square error will tend to zero relatively slowly.
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2. Examples

The function f(t) = cos (2t) + 4 cos (nt) satisfies f-(O) -8w2,

f_(l) = 0, f'(0) = f-l) - 0. Figures 1 and 2 show the exact bias of

the smoothing spline estimate of the function and its derivative for 50

equi-spaced sampling points and X = 106. The effect of f'(O) is clearly

evident. The asymptotic analysis (Lemma 6) predicts that the bias,

b(t) 2 f-(O)X1
/2 exp (-t 2 -1/2 

- / 4 )

.[sin (t 2-i/2 -I/4) - cos (t 2-1/2 X-/ 4)]

From this expression we see that the first zero-crossing of the bias should

occur at t = rX 2 = .035 and that b'(t) should be zero at t =

1/4 -1/2
iiX 2 = .070, which is borne out in Figure 1. Figure 2 shows that

the bias of the derivative is larger by a factor of about X1/4

We next consider the deconvolution problem wherein f is convolved

with a function w, the graph of which is an isosceles triangle centered

at 0 with height 20 and base .4. This is intended to correspond to a

situation in which averaged values of f are measured with error. Since

the analysis of section 4 requires that w be periodically extended, the

triangle is also centered over -1 and 1. To calculate the bias, (1.7)

was discretized assuming 25 equi-spaced observations and the solution was

computed at 50 equi-spaced points. Other mesh sizes were tried to insure

that the results did not merely reflect the discretization. The calculations

were done on a VAX 11/80 in double precision. Figure 3 shows the bias for

= 10-8; there is a clear effect near 0 and also an effect near 1. The
Ll

shapes are qualitatively similar to Figure 1.

11
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Since the assumption that w is periodically extended is clearly

somewhat artificial, we also computed the bias for w just correspond-

ing to a triangle centered over 0. The resulting bias is shown in Figure 4.

Here the only effect is near 0; the effect near 1 of Figure 3 is apparently

due to the periodicity of w.

**j~s i
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3. The Smoothing Spline and Its Derivative

In this section we derive Theorems 1-4 and some auxiliary results.

In order to do this we carry out a Fourier analysis of the smoothing spline.

Notice that

I2wiktg_

gk J e tt)dt f AgOak Aglbk +hkbk (3.1)

for k # 0 where

q 0 = g(1) - g(0)

Ag = g,(1) - g(0)

hk = e27iktg-(t)dt

Let

2 (xo+x n ) if j = 0

x. if j = 1,...,n-1

and set

n-i

YJ -- J=n j exp (2ijk/n)

Given a sequence of coefficients p we will let p(n) denote the correspond-

ing set of aliased coefficients arising in a discrete Fourier analysis



Go1

(n) k = 0,1,...n-1(n) '
Pk Pk+sn' k" "

I.t

Also let

(n) = p (n) -P

p0  p 0  s
Soo

and

k A 0 (n) Al(n)

=-- ag ak + Ag k k= l,..., n-I . (3.2)

Lemma 1. Let f and Ag , Ag be given. Assume that f,g are continuously

2differentiable with f g' E L . Then the function g minimizing (1.1) is

determined by the following specification on Fourier coefficients:

o 0 (n) .I. (n)
go0= - Ag a 0  + g  (3.3)

h = 0 for s # 0, (3.4)sn

hk+sn f k bk+sn zk (3.5)

for k 1,...,n-I and integral s. Here it is understood that

rk = (2-(k+sn))4

The Parseval relation implies that (1.1) can be rewritten as

- - - -
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go- (n)2 .k n) 1 (n) b (n) 2
S01+ R -Ago + Ag b k  -(hk k)

(3.6)

+ 1 )2 + E I 2 +E I
L kO0 s s0Soo

In minimizing this expression, one can separately minimize the sum of the

terms with k fixed for each value of k. Minimizing for k = 0 leads one

to (3.3) and (3.4). For k # 0 we have

Xhk+sn (Zk - (hkbk) (n))bk+sn (3.7)

Multiplying by bk+sn and summing over s leads to

(hb (n) k k (3.8)
k k )+rk

and this together with (3.7) leads to (3.5).

Lemma 2. Insert (3.3), (3.4) and (3.5) in (3.6). Minimizing the resulting

o 1expression with respect to Ag Ag leads to

o n-l fn-l
Ag 0 k=l n) a () 2/(X+rk) t'  (3.9)

and

g1  ( n) /(n)1r/
Agl -kL k b kn / +rk) I1 + f klb i k, (n) X/;+r k) .

(3.10)

, -- - -" I ..- , ,,- , , ,,,l

, , " " " ' a J I - * . . I
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If we insert (3.3), (3.4) and (3.5) in the expression (3.7), the result

can be written as

Xj + I~ + X Z I (3.11)
k=1 +k

Minimizing this expression with respect to Ag 0and Ag 1leads to the

following equations

E k =0 (3.12)
k=1l~ k

n-1l (n)

g k1 k (3.13)

0 1
On solving for Ag ,Ag the expressions (3.7) and (3.10) are obtained.

Lemma 3. The function g minimizing (1.1) has Fourier coefficients

4go = LO + Agl 0 (3.14)

g Agoa -Agk for s 0 (3.15)
gsn sn sn

and for k 1 ,...,n-1 and s integral

A [a 1 lb 12  a (n), (3.16)gk+sn Lk+sn X+r k.+sn k
k

-Ag1 [b -dr IbksI b

+ k+sn Yk..
Ab)+r kIi: -
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0 1with Ag Ag given by (3.9) and (3.10).

(n)The fact that a 0 and (3.3) holds lead to (3.14). Also (3.4)

and (3.5) inserted in (3.1) yield (3.15) and (3.16).

The integrated mean square error of g(t) as a function of f(t) is

01Zg(t)-f(t)] 
2 dt

= var(g(t))dt + f [E g(t)-f(t)] 2 dt . (3.17)

Moreover

var(g(t))dt = var(g0 ) + 2 E var(g k) (3.18)

varg0)+ 2k=l

It should be noted that the gk's are complex-valued random variables. The

covariance of two complex-valued random variables U,V is understood to he

cov(U,V) = E{(U-EU)(V-EV)}

We shall now derive Theorem 1. Notice that Ag and AgI are real even

though they are written in complex form. It is clear that

cov(9j'9k) = jjjk 2nJ (3.19)

for J,k f 0,1,...,n-l. From (3.19) it follows that

LAP I
,, .._. . ,: -. 

I

" " 
. •*0
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2 0 02  (n 2/ r)
(Ag0  L -- , 1k ()1 a 2

nak-1Ik / ( 3 .2 0 )

n-1 --2

kla (n) 2/ (+r

a 2(AglI) L- - , lb(n1 (X+r k)2)

n -1 k-2 
(3.21)

Since

n-I

k- 1 2 / (X+rk) F a 121Tkl2 (X12nk 4+i)

k-I IkI-
(3.22)

x-3/4 C

n-i
(n)12 / )2 X-7/4
a~K,(X~ C (3.23)

k=l kkC

n-i

kl Ibk  (A+rk) xi C3 , (3.24)

n-i I(n)12 / xr)2 _ -5/4
bk I (+r x C4 , (3.25)

where

c _ f 22 dx2 f 2x16 dx

2rrx 4+1 C2 (12wx1 4+1)2

C3 / dx 2r 12 l4  '

3f2 x 4+i ' f4 f dx
* *..( ! 2 ,x 4 +.) 2 ,
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if A(n)n 4 +was n - , it can be seen that

2 0 ~2 -2 -1/4
(Ag ) n- C 2C I X ,(3.26)

2 1 02 -2-3/4a (Ag ) 2'- C C- X- (3.27)

4

if X(n)n 4 as n The term

n-1

EI ~ ja4  - 1~- lbk 1n2 a (n)12 (3.28)
s k=1 ksn Xrk kn k

occurs as a coefficient of a 2(Ag 0) in contributing to (3.18). However,

(3.28) can be approximated by

k 0IJ2ffk 14+1)2  2  (.9

with an error 0(! if X(n)n 4 -)- as n -), . The term

n-1

l2 bk - I lbk~ 12 b (n)1 (3.30)
s k-1 ksn Xrk kn k

arises as a coefficient of a 2(Ag 1) in contributing to (3.18). An estimation

procedure similar to that used in arriving at (3.39) shows that (3.30) can be

approximated by

A2 12wik 14T X / C4 (3.31)

k (X 2nk14+1
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i nerror 01 if X3(n)n8 -6 as n - . The estimates obtained

for (3.28) and (3.30) imply that the contribution to (3.18) from the

* terms involving Ag and AgI  in (3.16) is

if X3(n)n8 - as n . Now consider the contribution from the last

term on the right of (3.16). We shall see that it makes the major contri-

bution to the integrated variance. The expression

n-1 ~ n1
2Ibk+ n4 1 (3.32)Sk1 IX+rk 2

can be approximated by

1 1 (
-I/ 4

-CI
O<IkI<i (127k1

4+1)2 n n

where

C f dx
5 =  (12x14+1)2

with an error O I)1  if X(n)n3 - as n .Theorem 1 follows

from these estimates.

Our next object is to derive Theorem 2 for the integrated squared bias

of g as an estimate of f. Notice that for k 0 0 we have
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f fjeeiktf (t)dt f0a. Af 1b k + kb k (3.34)

with

mk= Jol e 2 7tikt fj~t)dt (.5

Using (3.34) it is clear thal n-

-(f (0) +f (IN, k f fln)

k=~oo k=0

i J/n exp (-2nijk/n) (3.36)

n-I
E f(n) exp (-27wijk/n), j =1,...,n-1

This implies that

E yjr f fl) j - 0,1,... ,n-1 .(3.37)

From (3.34) it follows that

* f~(nl) -f
0a (n) -f 1b~~ (n)~ b )(n),

f jf a Afb +(jbj) ,.

Relations (3.9), (3.10), and (3.37) imply that



19

E Ago - Af0 + (mk bk) / (x+rk

k (X~r k(3.38)! -  a )-/

and

E Ag1 Af 1  + E lb (012 /X+r

I - k (nb (+rk)(

k k

Since we are dealing with real-valued functions f it follows that

'k m-k

and

(n)(n(mkbk) (m-kbk) n

These last two relations together with (3.38) and (3.39) imply that

00 , _ 02i k ) (2ik))Im mk(
E Ag -Af - j k=ol)2k1 4  14 (3.40)k- I+ A ,k k - +X1,, "k 4

and
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1 I~ e. H11
E Ag-Af Rem'o m+iikI k=o (3.41)

If f E C3  one can see that

Re mk = f -(x) cos 2nkx dx

ffi {ff(x)+f (-x)} cos 2nkx dx 
(3.42)

and

27rk Im mk = 21k ff(x) sin 21rkx dx

- - Af 2 + f( 3 )(x) cos 2rkx dx

=- Af2 + f (x) + f (-x)) cos 2nrkx dx (3.43)

with

2 f ( 2 )(1) - f( 2 )(O)

From (3.16) it follows that for k 1,...,n-1

--9
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k+sn k+sn )ak+sn - )+rk- E4O.O l kfI k

( g1-A 1 bb~ 2 ()
-(~-A)~k+sn -X+r k bk

+ (m.kb )(n) lbk+ b b344
k) A+r k mk+sn k+sn *(.4

Further, if f E C 4we have

k Af 2 a - 3b+f (4)b~ (3.45)
ak-Af bk k

with

=f f (2) (1) - f (2) (0)

Af 3  f f(3) (1) - f (3 )(0)

f f4 exp (2iikt)f (4) (tdt

4 The last term on the right of (3.44) can then be rewritten as

J (n) lb k+sn 2

lbk(asn12  bkk) X+r n k+sn

2 bk+n 2 2

kk X+r k k+2nbk+sn1 (.6
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Let

A (t) (b 2 (n) bk+sn b2 2-x (-211i(k+sn)t)

s k=1 jXk) )+rk k+sn)ex

A (t) =- -~ L (akbk) lb k+rn 2 a b exp (-2id(k+sn)t)
I k= kk k+sn k+sn~

s k=l k

A n-l j lb k+n12 a(01 e

3kt)lE k+sn X+rk a k ep(-27ri(k+sn)t)

Set

B.(t) = X E ( -i ) J exp (-2irikt), j =01,2, 3
k#0 M(2k) 4+1

Lema_4_ I X 3n 8~ X-0 as n = then

f A lA (t)-B (t)l 2dt = 2) j= =0,1,2,3 .(3.47)

7-2i

Also fJ0  1B (t)12 dt tends to zero at the rate of X 4 j -0,1,2,3.

V The estimates required for this lemma parallel those used to obtain

(3.29) and (3.31).

We wish to get more convenient representations or estimates of the

B (t)'s. A contour integration shows that
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If eitx 1 -It12-1 -1) +-i~tj_)C (t)-edx T-e (cos(t2)+sn(t2 )
J +x 22

Successive differentiation then indicates that

(t) = 1 Je f dx = r( sin(t2_)

1 TT itx 2 2_ ~~-

C (t) = 1 j e (ix) 2dx =1 jj_ (sin(ItI2 _i) -cos (t2)1
2l7 +x 42vT

eitx (ix) 3-1 tl2_1.
G 3(t) e 1 + dx =isnt e- cos (t2_1

An application of the Poisson summation formula tells us that

B(t) = ((k-t'. ) (3.48)

only the terms in the sum (3.48) corresponding to k = 0, k = 1 need to

be considered since the sum of the remaining terms die off at the rate

e-a with a a positive constant. Notice that the formulas for the

C.(t) above imply that

4 2
Lemma 5. Assume that f E C .Then if Af #0

2E Ag 0-Af0  x X1/2Af 2  (3.49) (

whiZe if Af =0
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0- 3/4 1 (3)(3)(1)E Ag0-Af' M/ X~/ ff f(0) + f ().(3.50)

if f (0) + f 2 (1) # 0 we have

E A g 1-Af 1  2 2 X1/4 1 ff( 2) (0) + (2) M}(3.51)
2 ()

and if f (2)(0) + f (2) (1 0

E LAg'Af1  Af ~fX (3.52)

as X =X(n) - 0.

The asymptotic relations (3.49) and (3.50) follow from (3.40), (3.43)

and (3.45). Formula (3.51) is a consequence of (3.41) and (3.42). If

f (2) (0) + f (2) (1) =0, since Re mk I (f (2 )(0) + f (2) () n a

see that

Re iN- X (27ik) 4Re 4(.3

=+ -LTk 1+X (27rk)4 (.3

However by (3.45)

Re m.K 3 __ 1 2 2 ( 4 ) Wx + f ()(-x) )Cos 2Trkxdx (3.54)

(21rk) f2k

This implies (3.52).

Lemma 6. Let f E C. if' f 2 (0) #0, f 2 (l) o then

r.
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E g(t)-f(t) - f(2)(O) e -t2 - - (sin(t2- J- ) - cos(t 2- X-k)2

+ e(t) , (3.55)

0 < t < 1, where the error term e(t) is such that

fe(t)2 dt o( [E g(t)-f(t)12 di) . (3.56)

If f(2)(0) f(2)(1) = 0, f(3)(O) 0 0, f(3)(1) = 0, we have

(3) 34 F2 t2- X-
E g(t)-f(t) = f X e cos(t2- X- ) + e(t) (3.57)

0 < t < 1, where the error term again satisfies (3.56).The approximations

appropriate for the cases f(2)(0) 0, f(2)(1) 0 0 and f(2)(0) =

f(2)(1) = 0, f(3)(0) = 0, f(3)(1) # 0 .,e obtained by repiacing t by

1-t in the main expressions on the right of (3.55) and (3.57)respectively.

We next consider the variance and bias of the derivative g' of the

smoothing spline. Theorems 2 and 3 follow from the previous analysis of g,

after noting that the Fourier coefficients of g' are

g= Ag°  (3.58)

gk = akAg - akhk, k # 0 . (3.59)

We first consider the integrated squared variance

V 2(gk°

1 . - -.. .,.. . .
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From (3.26),

2

a2(go 2 C2A2-1/4

As in (3.16)

k+sn k+snk+sn k+sn (1 +r k+sn k )

+) a k+snbk+sn (3.60)
k+sn n O  A+rk v;

Estimates similar to those used in the analysis of the smoothing spline

show that the contribution to the variance from the first term is of order

-n. The second term gives a contribution of order X-n-; the third

term dominates, giving a total contribution to V

n [X(27ik) 4+1]2

2 42

-314 (2rrx) 2

A= j "2'4+i2 dx . (3.61)
n ((2~7x) +1)2

Next, the bias:

E gk~s - k+sn = ak+sn(z Agl - Afl)

- ak+sn(E hk+sn - Mk+sn) (3.62)

which, as in (3.44)

t . " .. 1 '. . .......l. .
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bkaka (n)

= (E Ag O-Af bk+snak+snakn)

1 
b(n)a(n)b

I bk ak bk+sn|

+ (E Ag Af ak+sn - X+r

L k i

a (mkbk)) bk+sn
ak [ X+ - mk+sn . (3.63)

Making approximations as in the analysis of the spline function itself,

E g'(t)-f'(t) t (E AgO-Af 0 ) + (E AgO-Af0 ) X-1 B0 (t)

+ (E Ag -Af ) B3 (t) + Af 2B2 (t) - f 3B1 (t) .

Using the Poisson-summation approximation and Lemma 5 if f(2 )(0) 0,

f(2)(1) = 0,

f 2 -u
E g'(t) - f'(t) f( 2 ) 2 e cos u

where u = 2- 1 X- t. If f(2 )(0) = f(2)(1) 0, and f(3)(0) #0, f(3 )(1) =0

E g'(t) - f'(t) 9 - f(3 )(0) X I e- u (sin u + cos u)

Note that the approximate (in an L2  sense) bias of the derivative is

the derivative of the approximate bias (Lemma 6).
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4. Deconvolution

We now sketch the development of the deconvolution results. Since

this parallels closely the derivations of Section 3 the presentation will

be somewhat sketchier. As before let g have Fourier coefficients

gk = Ag ak - Ag bOk + hkbk k 0 (4.1)

and let

G = wk gk

Ak-wk ak

B= wk bk

lk wk bk hk

and define y. as in Section 3. Then (1.7) may be written as

n-i

a~n) (n)
L~~~ 1 -

+ 1 2 n-l12

(A ) IhJs (4.2)

Minimizing the 0 th term gives h sn 0 O, s 0 0, and G0 + n. 0 /rin°

0 1
As in the analysis of Section 3, we first fix Ag and Ag and

minimize with respect to the h 's. If
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z ~.-Ag 0A (n) + Agl1B (n)

Then (4.2) becomes

~2 + x[(A~) k s 43

The minimizing coefficients can be calculated to be

J+sn j+sn X+p~ 44

where pj IBj+8 12. Now to calculate the minimizing Ag 0and Agi

this solution is substituted back into (4.3) to give

X I IZ- I2 (X+p )1 + X(Ag1 )2  (4.5)

Minimizing this with respect to Ago and Agi amounts to solving two

linear equations in two unknowns, and it may be seen that the solution

is approximately

0 -n 11()1 ,+ -1l
Ag ReL a A1  (X+p ) A~I2 (p) (4.6)

Ag1  . Af + Re' ~jB~n) ()X+Pj 1 ~ + I B (n 1 (X+p )1 1)

(4.7)
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We next consider the integrated squared variance, which is the sum of

the variance of the Fourier coefficients of g. Now, from above,

8 j-s A 0 [ab - Ib~n~jsA~r

+ Ag I [b lb Jb+snl Wl+sn B n)

+ - J~n a .(4.8)
)-p. rn

Via approximationssimilar to those in Section 3, it may be seen that the

first two terms contribute a net variance of order n1lX28/(2+4) whereas

the third term contributes the dominating variance, which is of order

If we write the Fourier coefficients of f as

f Af a k - Aflb k +mk (4.9)

and take expectations in (4.8), the bias of the (J+sn) thFourier coefficient

may be expressed as

[a (n)

sb wk+sn~b+2  BA n

E- ~n-ks (E Ag -Af [bak+ k ~ k I
2- 2- (n

+ bk+snl k.M -ks btti~b (4.10)
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As in section 3 for Ikl f n/2, k 0 0

00 kgk-fk (E AgO-AfO) +k2

- (E Ag1-Af1 ) Xbk) +IBk( 2

+ Af2 )akbk

4) 2

X+B2

fk k

+ 2 (4.11)
X+IBk1

If we let

I Dj~t = 4-j
k W A k 2 exp (-2nikt) j 0,1,2,3 (4.12)

*k )L+ IB ki

(note that ID 112 , x(7-2j)/(4+20)) then

E g(t)-f(t) t (E Ag -Af )D (t) - (E Ag -Af )D(t)

+ &f2D(t) - Af3 D0(t)

f (4) b 
2

+ k exp (-2vikt) . (4.13)
A -Bk 2

, -!
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The function D (t) play the role of the functions BM(t) of section 3.

Although their exact analytical forms depend on w, they are, like the

B 's, successively odd and even, and are increasingly peaked near 0

and 1 as A - 0.

We now consider the individual terms in (4.13). From (4.6) it

follows that

0- " mkBkAk(X+pk)E AgO-Af 0

E [" IAk2 (pk)-1

The denominator can be estimated to be 3/(2+4). If Af2  0 0, the

numerator is

t Af 2 1IBkI 2 (X+pk)-I A-1/(20+ 4) .

In combination with D3  this gives a net contribution to the integrated

squared bias which is - X. If Af = 0 the numerator is

(f (3)(1) + f (3)(0))/2, giving a net contribution of order X7/(2a+4)

If f(k)(0) - f(k)(1) - 0 k - 2,3 the net contribution is 0(02).

Next,

Af+[ m j 1B j l(A+pk ) -
E Agl-Af + 1 )

1+I" !B9}2 '+Pk)-I

The denominator is X- 1 / (2 8+ 4 )  and if f(2)(1) or f (2)() 0 0 the

numerator is Q (f (2)(1) + f (2)(0))/2. This gives a net contribution to

Ii
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the integrated squared bias of order A If both second derivatives

are zero the numerator is

3 b k 1/(26+4)
1 f 1+iBkI2"

2i

giving a net contribution of order X7/(2B+4). If both second and third

2
derivatives vanish at 1 and 0 the net contribution is 0(A2).

The last term in (4.11) can be estimated and makes a contribution to

the integrated squared bias of order X2.

II

F
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